

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ADAPTIVE SELECTIONS OF SAMPLE SIZE AND
SOLVER ITERATIONS IN STOCHASTIC OPTIMIZATION

WITH APPLICATION TO NONLINEAR COMMODITY
FLOW PROBLEMS

by

David A. Vondrak

March 2009

 Thesis Advisor: Johannes O. Royset
 Second Reader: R. Kevin Wood

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2009

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Adaptive Selections of Sample Size and Solver
Iterations in Stochastic Optimization with Application to Nonlinear Commodity
Flow Problems
6. AUTHOR(S) David A. Vondrak

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

We present an algorithm to approximately solve certain stochastic nonlinear programs through sample-
average approximations. The sample sizes in these approximations are selected by approximately solving optimal-
control problems defined on a discrete-time dynamic system. The optimal-control problem seeks to minimize the
computational effort required to reach a near-optimal objective value of the stochastic nonlinear program. Unknown
control-problem parameters such as rate of convergence, computational effort per solver iteration, and optimal value
of the program are estimated within a receding horizon framework as the algorithm progresses. The algorithm is
illustrated with single-commodity and multi-commodity network flow models. Measured against the best alternative
heuristic policy we consider for selecting sample sizes, the algorithm finds a near-optimal objective value on average
up to 17% faster. Further, the optimal-control problem also leads to a 40% reduction in standard deviation of
computing times over a set of independent runs of the algorithm on identical problem instances. When we modify the
algorithm by selecting a policy heuristically in the first stage (only), we improve computing time, on average, by
nearly 47% against the best heuristic policy considered, while reducing the standard deviation across the independent
runs by 55%.

15. NUMBER OF
PAGES

57

14. SUBJECT TERMS Nonlinear Stochastic Optimization, Optimal Control, Dynamic
Programming, Network Commodity Flow, Sample Average Approximation, Projected
Gradient Method

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ADAPTIVE SELECTIONS OF SAMPLE SIZE AND SOLVER ITERATIONS IN
STOCHASTIC OPTIMIZATION WITH APPLICATION TO NONLINEAR

COMMODITY FLOW PROBLEMS

David A. Vondrak
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
March 2009

Author: David A. Vondrak

Approved by: Johannes O. Royset
Thesis Advisor

R. Kevin Wood
Second Reader

Robert F. Dell
Chairman, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

We present an algorithm to approximately solve certain stochastic nonlinear

programs through sample-average approximations. The sample sizes in these

approximations are selected by approximately solving optimal-control problems defined

on a discrete-time dynamic system. The optimal-control problem seeks to minimize the

computational effort required to reach a near-optimal objective value of the stochastic

nonlinear program. Unknown control-problem parameters such as rate of convergence,

computational effort per solver iteration, and optimal value of the program are estimated

within a receding horizon framework as the algorithm progresses. The algorithm is

illustrated with single-commodity and multi-commodity network flow models. Measured

against the best alternative heuristic policy we consider for selecting sample sizes, the

algorithm finds a near-optimal objective value on average up to 17% faster. Further, the

optimal-control problem also leads to a 40% reduction in standard deviation of

computing times over a set of independent runs of the algorithm on identical problem

instances. When we modify the algorithm by selecting a policy heuristically in the first

stage (only), we improve computing time, on average, by nearly 47% against the best

heuristic policy considered, while reducing the standard deviation across the independent

runs by 55%.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. LITERATURE REVIEW ...2
C. RESEARCH GOAL ..3
D. STRUCTURE OF THESIS AND CHAPTER OUTLINE4

II. PROBLEM DEFINITION AND FORMULATION...5
A. PROBLEM FORMULATION ...5

1. Expected-value Problem..5
2. Approximating Problem..6
3. Properties of Sample Average...7

B. ALGORITHM..8
C. PRECISION-ADJUSTMENT PROBLEM ...9

III. METHODOLOGY ..11
A. PRECISION ADJUSTMENT CONTROL..11

1. Controlling Sample Size ..11
2. Dynamic Program..14

B. PARAMETER ESTIMATION...17
1. Estimating Variance ..18
2. Estimation of Rate-of-Convergence Coefficient and Optimal

Objective Value ..18
C. STOPPING CRITERION...20

IV. COMPUTATIONAL STUDY...23
A. SINGLE-COMMODITY NETWORK FLOW...23
B. MULTI-COMMODITY NETWORK FLOW ..25
C. COMPUTATIONAL STUDY...27

V. CONCLUSIONS ..35

LIST OF REFERENCES..37

INITIAL DISTRIBUTION LIST ...39

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Expected Value function compared to Sample Average function6
Figure 2. Approximate Normal Distribution of ()Nf x ...8
Figure 3. Approximate Normal Distribution of ()

k k

k
N nf x ..12

Figure 4. Approximate Truncated Normal Distribution for ()
k

k
nf x13

Figure 5. Truncated normal distributions of function values ..14
Figure 6. Representative illustration of dynamic program..15
Figure 7. Discretization of truncated normal with small and k kN n17
Figure 8. Discretization of truncated normal with large and k kN n17
Figure 9. Transportation Grid Network...24

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. Average and standard deviation of computing times of CA with Model-
Predictive Control (MPC) policies and heuristic policies applied to SCF.......30

Table 2. Average and standard deviation of computing times of CA with Model-
Predictive Control (MPC) policies and heuristic policies applied to MCF.32

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

EXECUTIVE SUMMARY

Optimization of stochastic programs is challenging in part because there is no

closed-form solution, and because solution algorithms tend to be computationally

intensive. The difficulty arises because the objective function and/or constraint

functions are given by expectations that cannot be evaluated exactly. Hence,

approximations are usually employed in optimization algorithms to estimate such

functions. One class of such algorithms uses sample-average approximations within a

nonlinear approximating problem (AP). However, there is no straightforward means to

determine a sample size for use in these algorithms. Most algorithms resort to using

heuristic policies for determining an appropriate sample size. In addition to sample size,

because the AP is nonlinear, a suitable number of iterations of a nonlinear programming

solver must also be selected for solving it. Most often, the number of solver iterations is

selected prior to calculations beginning. It is often difficult in practice to select sample

sizes and number of solver iterations that balances accuracy and computational effort.

We develop a discrete-time dynamic system, the optimal control of which

determines a policy for sample size and a number of solver iterations for use in the AP.

The optimal-control problem seeks to minimize the computational effort required to

reach a near-optimal objective value of the stochastic nonlinear program. The optimal-

control problem is approximately solved within a receding horizon framework, allowing

repeated estimation of unknown parameters.

Empirical studies are performed on nonlinear single and multiple-commodity

network-flow problems on a grid constructed of 50 nodes with 134 arcs. The optimal-

control problem selects sample sizes and solver iterations that lead to near-optimal

objective values in less time than alternative heuristic policies in all instances tested.

Measured against the best alternative policy we consider for selecting sample sizes, the

algorithm finds a near-optimal objective value on average up to 17% faster. Further, the

optimal-control problem also leads to a 40% reduction in standard deviation of

computing times over a set of independent runs of the algorithm on identical problem

 xiv

instances. The unknown parameters in the optimal-control problem may be poorly

estimated prior to the first stage of the algorithm, which may result in a poor policy for

the first stage. When we modify the algorithm by selecting a policy heuristically in the

first stage (only), we improve computing time, on average, by nearly 47% against the

best heuristic policy considered, while reducing the standard deviation across the

independent runs by more than one-half.

 xv

ACKNOWLEDGMENTS

I wish to thank Professor Johannes Royset for his unconditional guidance and

unwavering patience during the completion of this research. Without his tireless efforts

in keeping me focused and constant reminders in properly explaining notation, none of

this would have been precise. His expert mind bears the responsibility for this research

and thanks to his attentive mentorship; I was able to complete this fascinating journey.

I would also like to extend my deepest gratitude to Professor Kevin Wood for his

dedicated efforts to ensure my writing was meaningful. He graciously accepted the

challenge of editing my sometimes incoherent babble, and made my words more eloquent

then they otherwise would have been.

Finally, I wish to thank my devoted wife, Terri, for her immeasurable support and

endless patience in the midst of this personal adversity. Without her personal sacrifice,

this work would not have been accomplished. To my daughters, Emily, Peytin, and

Madelyn, thank you for enduring weeks without dad so that I could finish the work that

kept me from you.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

Optimization of stochastic programs has become a focus of much research over

the past decade. These problems are of particular interest in part because they have no

closed-form solutions and solution algorithms tend to be computationally intensive. The

difficulty arises because the objective function and/or constraint functions are given by

expectations that cannot be evaluated exactly. Hence, approximations are usually

employed to estimate such functions. Approximations may provide precise, high-fidelity

estimates with high computational cost, or may provide low fidelity with less

computational cost. This research focuses on finding a balance between these two

important factors.

Numerous design and planning applications require the optimization of

stochastic-programming problems. In aerodynamics, various problems arise in the

optimization of a three-dimensional wing design (Alexandrov et al., 2001). In one civil-

engineering discipline, problems arise from structural optimization of bridges or support

structures subject to failure probability constraints (Polak and Royset, 2007; Royset and

Polak, 2007). Such problems may seek to optimize the cross-sectional dimensions of a

support column consisting of a material of particular yield strength subjected to various

bending moments. Structural loading of the support column weighs heavily on design

considerations due to inherent failure probabilities of the materials. Many additional

examples of stochastic-programming problems can be found in the areas of logistics and

supply-chain planning. Numerous papers discuss solution methodologies for optimal

design of supply-chain management including, but not limited to productions lines,

consumer demand, availability of raw materials, warehousing and transportation of

goods. In Santoso et al. (2003), a proposed stochastic-programming model and solution

algorithm are used to compute high-quality solutions to large-scale stochastic supply

chain design problems. Poojari et al. (2006) presents a method to solve discrete resource

 2

allocation problems in the presence of future uncertainties for supply-chain planning and

Sox and Muckstadt (1997) describe a finite-horizon stochastic optimization model for a

stochastic lot-scheduling problem.

One approach to approximately solve optimization problems defined in terms of

expectations is to use Sample Average Approximations (SAA), e.g., (Ruszczynski and

Shapiro, 2007). That is, one or more approximating problems (APs) are solved,

problems that replace each expectation with a standard sample average approximation.

The AP may be viewed as a deterministic mathematical program, a nonlinear

mathematical program in our case. A very large sample size in the sample-average

approximation will provide a precise estimate of the expected-value function, but the

computational effort required to solve the AP for this sample size may be far too high.

As an alternative, this research examines the computational effort associated with solving

a sequence of APs where an efficient sample size is chosen at each stage of the sequence.

Coarse approximations are made early and, as the calculations evolve, adaptive

adjustments to the sample size are made, increasing the precision of the results. This

adaptive control strategy is intuitively appealing as gains towards optimality come

initially at low computational cost through coarse approximations, and fidelity is

increased as larger samples are used near the completion of the algorithm.

In addition to finding an efficient sample size for use with calculations, we are

also concerned with selecting an efficient number of iterations for the chosen nonlinear

programming (NLP) solver used in solving various instance of the AP. The number of

solver iterations has a profound impact on computational cost as well. Our approach will

determine an efficient number of iterations for the NLP solver to carry out along with an

efficient sample sizes for defining the APs as the overall algorithm progresses.

B. LITERATURE REVIEW

Stochastic programming solution methodologies incorporate both mathematical-

programming techniques and statistically motivated approximations. These

approximations are generally internal or external in nature. The distinction is found in

the management of sample selection. With external methodologies (Royset and Polak,

 3

2007), samples are taken before the solution algorithm begins (or they could be taken

before the algorithm begins), and no additional sampling is performed during the

optimization process. In internal methods (Higle and Zhao, 2004), samples are intrinsic

to the iterative solution process, performed whenever the algorithm requires the

estimation of expectations. An alternative to an external sampling approach with a fixed

sample size is to vary the sample size during the calculations using closed-loop or open-

loop techniques (Polak and Royset, 2007). With a closed-loop technique, the sample size

is adapted during the calculations. For example, if the objective value in a given iteration

falls below a moving floor, the sample size may be increased. On the other hand, in an

open-loop technique, sample sizes are preassigned (Polak and Royset, 2007). In most

cases, the sample sizes increase as iterations progress towards an optimal solution.

He and Polak (1990) describe a method for handling progressively finer stages of

discretization for semi-infinite optimization problems, which uses a precision-adjustment

strategy relevant to the present work. They formulate an auxiliary optimization problem

that determines the number of solver iterations and precision level at different stages of

the calculations so that overall computing time is minimized approximately. The present

work is motivated by this study.

C. RESEARCH GOAL

The goal of this research is to find an efficient way of selecting sample size and

number of solver iterations for use in solving a nonlinear stochastic program through the

solution of a sequence of APs that use sample average approximations. We formulate a

discrete-time optimal-control problem that we solve approximately to obtain a precision-

adjustment policy for determining the sample size and number of solver iterations. This

policy makes coarse approximations in the early stages of the problem and, as

progression to the optimal objective value is achieved, the sample size increases to ensure

convergence to a locally optimal solution. The optimal-control problem is formulated

with the objective to minimize the amount of computational work necessary to reach a

locally optimal solution to the AP.

 4

D. STRUCTURE OF THESIS AND CHAPTER OUTLINE

This thesis is organized into five chapters including the Introduction. Chapter II

provides a discussion on the formulation of a nonlinear stochastic problem, an outline of

the algorithm we intend to use to solve stochastic nonlinear network flow problems and

introduces our precision-adjustment problem. Chapter III introduces the methodology we

propose to use for selecting an efficient sample size and number of solver iterations in the

solution algorithm; stopping criterion are also discussed. Chapter IV formulates and

solves two types of stochastic nonlinear network flow problems. It compares our

algorithm’s efficiency with the efficiency of similar algorithms that use heuristic sample-

size and solver-iteration policies. Chapter V summarizes the research and presents the

main findings and insights.

 5

II. PROBLEM DEFINITION AND FORMULATION

This chapter formulates a stochastic nonlinear program and presents a conceptual

algorithm we use as our solution approach. Further, it describes the precision-adjustment

problem we face within the conceptual algorithm.

A. PROBLEM FORMULATION

This section describes the formulation of the “expected-value problem” and an

approximating problem which will be used as a surrogate to approximately solve the

expected-value problem.

1. Expected-value Problem

Consider the optimization of, say, an engineering design or logistics problem

defined by the random function (,)F x ω , where nx X∈ ⊂ ¡ is a vector of continuous

decision variables and ω is a vector of continuous random variables defined on the

probability space (, ,)F PΩ . This situation results in a difficult stochastic optimization

problem of the form:

 min { () : E[(,)]}
nx X

f x F x ω
∈ ⊂

=EP :
¡

, (2.1)

where X is a compact subset of n¡ representing feasible solutions of the problem, and E

is the expectation taken with respect to the known probability distribution P of the

random vector ω . We assume that, for every x X∈ , the expected-value function is well

defined and smooth (continuously differentiable). Further, we denote the optimal value

of (2.1) as f ∗ with a set of optimal solutions denoted by X*. Further we indicate a set of

ε-optimal solutions by X ε
∗ , i.e., for any 0ε ≥

 : { | () }.X x X f x fε ε∗ ∗= ∈ − ≤ (2.2)

Because the distribution of (,)F x ω is unknown, we cannot compute the

expectation in closed form, so we approximate the expected-value function by the

 6

sample-average estimator discussed below. Uncertainty may also be introduced in the

constraint functions defining X; however, our research focuses only on uncertainty in the

objective function.

2. Approximating Problem

To approximate () E[(,)]f x F x ω= we use a sample average defined by:

1

1: (,)
N

j
N

j

f F x
N

ω
=

= ∑ , (2.3)

where 1 2, ,..., Nω ω ω , is a sample of size N consisting of independent, identically

distributed (iid) random variables. Moreover, we define an approximating problem (AP):

 min ()Nx X
f x

∈
AP : , (2.4)

with an optimal value denoted by Nf ∗ . We refer to (2.1) and (2.4) as the “expected-

value” and “approximating problems,” respectively.

The expected-value function, for instance, may be represented by the function

depicted by the solid line in Figure 1. This function, as stated above, cannot be computed

in closed form, so we approximate the function’s form by the sample average as shown in

Figure 1. As discussed in Section 3 below, we expect the sample average to take the

form of the expected-value function as the sample size approaches infinity. It is known

that solving the AP with an appropriate sample size provides a reasonable approximation

to the solution to EP (Ruszczynski and Shapiro, 2007).

x

f(x
)=

E
[F

(x
,ω

)]

()Nf x

()f x

x

f(x
)=

E
[F

(x
,ω

)]

x

f(x
)=

E
[F

(x
,ω

)]

()Nf x

()f x

Figure 1. Expected Value function compared to Sample Average function

 7

3. Properties of Sample Average

Monte Carlo simulation can be used to generate an iid sample of 'sω of size N to

obtain 1 2(,), (,),..., (,)NF x F x F xω ω ω for use in (2.3). It is well known that ()Nf x is an

unbiased estimator of ()f x i.e.,

2

E[()] () ,

Var[()] () / ,
N

N

f x f x

f x x Nσ

=

=

where

 2 () Var((,))x F xσ ω= .

Because the generated sample is iid and given rather weak general assumptions, it

follows from the Law of Large Numbers (LLN) that ()Nf x converges pointwise to ()f x

with probability one, as N →∞ (Ruszczynski and Shapiro, 2007). Therefore, we would

expect the optimal value and optimal solution of the AP to converge to those of EP, as

N →∞ . This is made precise in the following proposition.

Proposition 1. (Prop. 4.2; Ruszczynski and Shapiro, 2007). If the pointwise

LLN holds, i.e., ()Nf x converges to ()f x uniformly on X, with probability one

as N →∞ , then * converges to Nf f∗ with probability one, as N →∞ .

Moreover, if 2E[(,)]F x ω < ∞ , then it follows under weak assumption from the

central limit theorem (CLT) that (() ())N xN f x f x Y− ⇒ , where ⇒ denotes

convergence in distribution and xY is a zero-mean normal random variable with variance

2 ()xσ (Ruszczynski and Shapiro, 2007). Hence, for a large N, ()Nf x is approximately

normally distributed with mean (),f x and variance 2 () /x Nσ . Figure 2 illustrates this

result.

We know that

 []min E () E min ()N Nx X x X
f x f x

∈ ∈
⎡ ⎤≥ ⎣ ⎦ ,

 8

and, because ()Nf x is an unbiased estimator of ()f x , it follows that *E Nf f∗⎡ ⎤ ≤⎣ ⎦ . That

is, the AP’s optimal objective value is a downward-biased estimate of the optimal

objective value of the EP.

x

f(x
)=

E
[F

(x
,ω

)]

f(x)=E[F(x,ω)]

()Nf x

x

f(x
)=

E
[F

(x
,ω

)]

f(x)=E[F(x,ω)]

()Nf x

Figure 2. Approximate Normal Distribution of ()Nf x

B. ALGORITHM

We consider a conceptual algorithm of the following form for approximately

solving EP.

Conceptual Algorithm (CA)

 Data: Optimality tolerance ε ≥ 0; initial point 1
0x X∈ .

 Step 1: Set stage counter k = 1.
 Step 2: Determine kN and kn .
 Step 3: Carry out kn iterations of a solver applied to:

 min ()
kNx X

f x
∈

, started with 0
kx using the kN found at Step 2.

 Step 4: If
k

k
nx X ε

∗∈ , then Stop. Else set 1
0 k

k k
nx x+ = , replace k by k+1 and

 go to Step 2.

 9

We refer to Steps 2-4 as a “stage.” CA uses a single set of sample realizations for

each stage, but all samples are independent between stages. For purposes of this

research, we have chosen the Projected Gradient Method (PGM) as our nonlinear

programming solver (for example, see Polak 1997, p. 66). However, it is worth

mentioning that any linearly convergent nonlinear programming solver may be used. Our

goal is to determine and k kN n for each stage that approximately minimizes the total

computational effort required by CA to reach a near-optimal objective value to EP. We

refer to the rule for selecting and k kN n as a “policy.”

C. PRECISION-ADJUSTMENT PROBLEM

We define the task of selecting the appropriate kN and kn for each stage of the

CA as the Precision-Adjustment Problem (PAP). We formulate PAP as a particular

discrete-time optimal-control dynamic program, which is discussed in the next chapter.

PAP is solved approximately using dynamic programming to obtain a precision-

adjustment policy for determining kN and kn . This policy adaptively adjusts the sample

size and number of solver iterations between stages. PAP is formulated to minimize the

amount of computational work necessary to reach a near-optimal objective value of the

stochastic nonlinear program. After carrying out kn solver iterations, we abandon further

progress to the locally optimal solution for the current AP, and use this iterate as a warm

start for the next stage of CA.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

III. METHODOLOGY

This chapter describes how we control the precision within the conceptual

algorithm and how we estimate the parameters for the precision adjustment. Further, the

chapter presents the criterion by which we stop the conceptual algorithm (in Step 4).

A. PRECISION ADJUSTMENT CONTROL

This section presents a discrete-time dynamic system, the optimal control of

which will determine a sample size kN and a number of solver iterations kn to be used

for each stage of CA.

1. Controlling Sample Size

The dynamic system described in Royset (2009) lays the foundation for this

research. Following his approach, we first identify the asymptotic distributions of the

progress made by CA. We assume that the solver used in Step 3 of CA is uniformly

linearly convergent (see Royset, 2009), i.e., there exists a ()0,1θ ∈ such that

(()) (())N N N N Nf P x f f x fθ∗ ∗− ≤ − for all x X∈ and N ∈¥ , where {1,2,3,...}=¥ and

()NP x is the iterate found after carrying out one iteration of the solver used in the CA

starting from x with sample size N . We refer to θ as the rate-of-convergence

coefficient. We let ()k

k

n
NP x denote the iterate from the solver found at stage k, after kn

iterations with a sample of size kN starting from x. It follows from the assumption of

linear convergence and from the optimality of
kNf ∗ , that for any x X∈ ,

 (()) (())k k

k k k k k k

n n
N N N N N Nf f P x f f x fθ∗ ∗ ∗≤ ≤ + −

with probability one. Moreover, based on rather weak assumptions and theorems

introduced in Royset (2009), if and k kN n are large, ()
k k

k
N nf x is approximately

distributed as

 12

1

1 2((()), () /)k

k

n k
n kf f x f x Nθ σ

−

∗ − ∗ ∗+ −N , (3.1)

where (,)µ σN represents a normally distributed random variable with mean µ and

variance σ . Figure 3 illustrates a possible approximate distribution of ()
k k

k
N nf x as stated

from this conclusion.

1

1(())k

k

n k
nf f x fθ

−

∗ − ∗+ −
1

1(())k

k

n k
nf f x fθ

−

∗ − ∗+ −
Figure 3. Approximate Normal Distribution of ()

k k

k
N nf x

Further, Royset (2009) shows that we can heuristically approximate the

distribution ()
k

k
nf x with truncation at f ∗ to account for the fact that

() for all f x f x X∗≥ ∈ . Therefore our approximate distribution for
1

1(())k

k k

n k
N nf P x

−

−

conditional on
1

1
k

k
nx

−

− is:

1

1 2((()), () / ,)k

k

n k
n kf f x f x N fθ σ

−

∗ − ∗ ∗ ∗+ −N , (3.2)

where N denotes a truncated normally distributed random variable based on

1

1 2((()), () /)k

k

n k
n kf f x f x Nθ σ

−

∗ − ∗ ∗+ −N , with a truncation threshold f ∗ . Figure 4

illustrates this distribution. As discussed in Subsection 2, we can control this distribution

by changing and k kN n .

 13

f ∗

1

1(())k

k

n k
nf f x fθ

−

∗ − ∗+ −f ∗

1

1(())k

k

n k
nf f x fθ

−

∗ − ∗+ −f ∗

1

1(())k

k

n k
nf f x fθ

−

∗ − ∗+ −
Figure 4. Approximate Truncated Normal Distribution for ()

k

k
nf x

Since (3.2) approximately holds for any k, we can use that expression to estimate

the quality of a solution generated by the CA after any number of stages given a selection

of sample sizes and number of iterations. The situation is illustrated in Figure 5, where

the
0

0()nf x and a selection of 1 1(,)N n determines the probability distribution of
1

1()nf x .

Given an outcome of that distribution, a selection of 2 2(,)N n , gives the distribution of

1

1()nf x , etc.

The values for 2 , , and ()f xθ σ∗ ∗ in the distribution (3.2) are unknown, however.

Since
1

1
k

k
nx

−

− is known at the beginning of the kth stage, we can estimate
1

1(),
k

k
nf x

−

− and we

construct estimation schemes as shown in Subsection B below to

estimate 2 , , and ()f xθ σ∗ ∗ . We now develop a dynamic program as discussed in Royset

(2009).

 14

3 31 1 2 2

0 1 2 3

,, ,0 1 2 3() () () ()...N nN n N n
n n n nf x f x f x f x⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

1

1

0

1

0 2
1

 () is a truncated normal with distribution

((()), () / ,)
n

n
n

f x

f f x f x N fθ σ∗ ∗ ∗ ∗+ −

3

3

2

3

2 2
3

() is a truncated normal with distribution

((()), () / ,)
n

n
n

f x

f f x f x N fθ σ∗ ∗ ∗ ∗+ −

2

2

1

2

1 2
2

() is a truncated normal with distribution

((()), () / ,)
n

n
n

f x

f f x f x N fθ σ∗ ∗ ∗ ∗+ −

3 31 1 2 2

0 1 2 3

,, ,0 1 2 3() () () ()...N nN n N n
n n n nf x f x f x f x⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

1

1

0

1

0 2
1

 () is a truncated normal with distribution

((()), () / ,)
n

n
n

f x

f f x f x N fθ σ∗ ∗ ∗ ∗+ −

3

3

2

3

2 2
3

() is a truncated normal with distribution

((()), () / ,)
n

n
n

f x

f f x f x N fθ σ∗ ∗ ∗ ∗+ −

2

2

1

2

1 2
2

() is a truncated normal with distribution

((()), () / ,)
n

n
n

f x

f f x f x N fθ σ∗ ∗ ∗ ∗+ −

Figure 5. Truncated normal distributions of function values

2. Dynamic Program

Beginning at stage k, we define estimates of
1

1 2(), , , and ()
k

k
nf x f xθ σ

−

− ∗ ∗ as

2, , , and fr r r rθ σ
∗ respectively and as in Royset (2009), use (3.2) as a basis for a model

of (), , 1, 2,...
l

l
nf x l k k k= + + . We let , , 1, 2,...lf l k k k= + + denote our estimates of

(), , 1, 2,...
l

l
nf x l k k k= + + . Controls are defined as 1 1 2 2(,), (,), (,),...k k k k k kN n N n N n+ + + +

and the dynamic equation for the state lf is

 21 ((), / ,), , 1, 2,...ln
l l lf r r f r r N r l k k kθ σ

∗∗ ∗
+ = + − = + +N (3.3)

with initial condition k ff r= and where the equality indicates equality in distribution.

We define (,)c N n to be the computational cost of carrying out n iterations of the

solver applied to the AP with a sample of size N, where the terminal state is characterized

by (1,0) 0c = . Terminal states discussed in Royset (2009) are defined by X ε
∗ , and are

translated for our case as

 : { | }T rξ ξ ε∗= ∈ − ≤¡ .

 15

The set of feasible controls ()R ξ are defined as: If

, then () {(1,0)}; otherwise, () .T R Rξ ξ ξ∈ = = ×¥ ¥ We seek an admissible stationary

policy : {0}τ → × ∪¡ ¥ ¥ with () ()l lf R fτ ∈ which minimizes the computational cost

by evaluating a planning horizon of feasible controls (,)k kN n , 1 1(,)k kN n+ + ,

2 2(,),...k kN n+ + . The sample-size control-problem stated in Royset (2009) which

accomplishes this task is

 , (, , ,) : limsup (())
s

k f l
s l k

J r r r r E c fτ θ σ τ∗

→∞ =

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑ ,

subject to constraints (3.3). Here E is the expectation with respect to the disturbances on

the stages k, k + 1,…, s due to the truncated normal distribution in (3.3) Finally, we

define the surrogate sample-size control problem by

 ,(, , ,) : inf (, , ,)k f k fr r r r J r r r rθ σ τ θ στ

∗ ∗S - SSCP . (3.4)

End of

k -1
End of

k

f *

0()kf x

f ε∗ +

Small kN

Large kN

End of
k -1

End of
k

f *

0()kf x

f ε∗ +

Small kN

Large kN

Figure 6. Representative illustration of dynamic program

Now, assume we have estimated
1

1
0() ()

k

k k
nf x f x

−

−= at the beginning of stage k; see

Figure 6. We wish to choose a pair (,)k kN n that will be computationally efficient so that

at the end of the kth stage shown in Figure 5 we have progressed toward f ∗ at a

“reasonable” computational cost. As shown by the dotted line in Figure 5, we define a

 16

tolerance ε to determine a range of near-optimal objective values that are acceptable for

selection as f ∗ . Further, we assume that the computational cost of the kth stage is

defined as (,)k k k kc N n N n= . Then, from (3.2), we see that selections of and k kN n have

varying effects. A small kN increases the variability in the truncated distribution

whereas a large kN compresses the distribution, reducing the variability. The number of

solver iterations also impacts the cost by affecting the mean of the truncated distribution

in (3.2). As kn increases, the mean of the distribution moves closer to f ∗ , but also

increases the computational cost. The optimal policy of (, , ,)k fr r r rθ σ
∗S - SSCP balances

the computational cost of selecting large and k kN n and the likelihood that the CA

reaches a near-optimal objective value in the current stage. Hence, we expect that policy

to be reasonably efficient even though it is based on several approximations.

To solve (, , ,)k fr r r rθ σ
∗S - SSCP approximately, we discretize the state space and

the truncated normal distribution and then apply backward recursion to the resulting

dynamic program. We refer to the policy computed in this manner as Model-Predictive

Control (MPC). We adopt the discretization technique, as in Royset (2009), on a

planning horizon of 10 future stages. A general depiction of the discretization scheme

applied to Figure 6 is shown in Figures 7 and 8. An example of a relatively low cost

selection of and k kN n is shown in Figure 7. Here, a relatively small Nk with a choice of

small nk provides little gains toward f ∗ . Although progress is made toward f ∗ ,

additional stages of CA are necessary arrive at a near-optimal value.

 17

End of
k -1

End of
k

f *

0()kf x

f ε∗ +

End of
k -1

End of
k

f *

0()kf x

f ε∗ +

Figure 7. Discretization of truncated normal with small and k kN n

End of
k -1

End of
k

f *

0()kf x

f ε∗ +

Figure 8. Discretization of truncated normal with large and k kN n

Figure 8 depicts a situation where a large Nk and a large nk provide a near-optimal

objective value close to f ∗ but at a high computational price. For this situation, future

stages of CA may not be necessary in order to achieve a near-optimal objective value.

B. PARAMETER ESTIMATION

We rely on estimates of the parameters
1

1(), , ,
k

k
nf x f θ

−

− ∗ and 2 ()xσ ∗ in

(, , ,)k fr r r rθ σ
∗S - SSCP as we describe next.

 18

1. Estimating Variance

Upon completion of kn iterations of the solver with a sample of size kN in stage

k, the set of iterates 0 0{ } and function values { ()}k k

k

n nk k
i i N i ix f x= = are known. We use this

information to estimate parameters 2, , , and fr r r rθ σ
∗ . First, we discuss our estimate for

2r
σ

. We let 2
1ˆkσ + denote our estimate of 2 *()xσ for stage k + 1 and set it equal to the

sample variance at the last iterate, i.e.,

2
2 2

1
1

1ˆ : ((,) ())
1

k

k k k

N
k j k

k n N n
jk

r F x f x
Nσ

σ ω+
=

= = −
− ∑ .

2. Estimation of Rate-of-Convergence Coefficient and Optimal Objective
Value

Next, we determine rθ , the estimate of the rate-of-convergence coefficient θ of

the nonlinear programming solver used in Step 3 of CA. We adopt the method in He and

Polak (1990) to estimate θ , but modify it slightly, adding an exponential smoothing step

to avoid large changes in the estimate. As the estimate of θ is updated after each stage,

we let k̂θ be the estimate of θ available at the beginning of stage k and set k̂rθ θ= in

(, , ,)k fr r r rθ σ
∗S - SSCP .

As in Royset (2009), the (biased) estimate of f ∗ at the beginning of the kth stage

is computed by a weighted average of estimates of , 1, 2,..., 1
lNf l k∗ = − , and is denoted by

k̂f
∗ . Unlike the approach used by Royset, k̂f

∗ is computed with a fixed, conservative

estimate of the rate of convergence denoted by θ . The meaning of “conservative” is

discussed in more detail in the explanation of Step 6 of Subroutine PE below.

Subroutine PE(k, k̂θ k̂f
∗ , 0{ ()} k

k

nk
N i if x =)

 Parameters: Exponential smoothing parameter (0,1)ψ ∈ , conservative estimate
 (0,1)θ ∈ of rate of convergence θ and tolerance 0θε > .

 19

 Input data: Previous stage index k; estimates k̂θ and k̂f
∗ ; function values

 0{ ()} k

k

nk
N i if x = from stage k.

 Output: Returns estimates 1 1
ˆˆ and k kfθ ∗

+ + .

 Step 1: Set ˆ
k̂θ θ= .

 Step 2: Estimate the minimum of ()
k

k
N nf x by:

1

0

ˆ() (())1
ˆ1

kk
k k k

k

n ik kn
N n N i

n i
ik

f x f x
b

n
θ

θ

−−

−
=

−
=

−
∑

 Step 3: Solve least-square problem:
2

, 0
(,) arg min (log(()) log)

k

k

n
k

N i
a b i

a b f x b i a b
=

= − − −∑

 Step 4: If ˆ ˆ| | , set and go to Step 5.a aθθ ε θ− < = Else, set ˆ aθ = and go to Step
2.

 Step 5: Set 1
ˆ ˆ ˆ(1)k kθ ψθ ψ θ+ = + −

 Step 6: Compute conservative estimate of the minimum value of ()
k

k
N nf x

0,1,... 1

() ()
ˆ : min

1

k

k k k

kk

n ik k
N n N i

k n ii n

f x f x
m

θ
θ

−

−= −

−
=

−

 Step 7: Estimate f ∗ :

1

1

1

1 1

ˆ ˆˆ:
k

k
lk l

k kk k
k li l

NNf m f
N N+

−

∗ ∗=

= =

= + ∑
∑ ∑

Step 8: Return
11

ˆˆ and
kk fθ
+

∗
+

From our assumption of a uniformly linearly convergent solver, it follows that

(() ()) / (1)k k

k k k k

n i n ik k
N N n N if f x f xθ θ− −∗ ≥ − − for all i = 0, 1, 2, …, 1kn − . Step 2 averages

these lower-bounding estimates with the current estimate of θ and uses this as an

estimate of
kNf ∗ . With this estimate, we compute an estimate of the rate-of-convergence

coefficient in a least-squares sense. That is, we use log-linear regression to compute the

rate-of-convergence coefficient to best fit the sequence 0{ ()} k

k

nk
N i if x = . We define a

tolerance for computing the rate-of-convergence coefficient, denoted by θε , which

 20

determines when to terminate the regression technique. Next, we perform exponential

smoothing so as not to let the estimate of θ vary too much from one stage to another.

The value ˆ km in Step 6 of Subroutine PE is guaranteed to be a lower bound on
kNf ∗ only

if θ θ≥ . Hence, we recommend θ be set to a value close to 1. Since 1k̂f
∗
+ is simply the

weighted average of ˆ , 1, 2,...,lm l k= , and E[]Nf f∗ ∗≤ (see Chapter II, Section A,

Subsection 3), we therefore find that 1k̂f
∗
+ is a lower bound on f ∗ , on average, when

θ θ≥ .

C. STOPPING CRITERION

We could implement a stopping criterion based upon a hypothesis test of Karush-

Kuhn-Tucker (KKT) conditions as developed in Ruszczynski and Shapiro (2007). As

stated in Ruszczynski and Shapiro (2007), suppose that the feasible set X is defined by

equality and inequality constraints in the form

 : { : () 0, 1,..., ; () 0, 1,... },n
i iX x g x i q g x i q p= ∈ = = ≤ = +¡

where the ()ig x are smooth deterministic functions. If only equality constraints are

present and the gradient vectors ˆ(), 1,...,ig x i q∇ = are linearly independent, then the

hypothesis test of KKT conditions can be based upon an asymptotically noncentral chi-

square distribution. If the assumption of linearly independent gradient vectors cannot be

met, a degenerate solution is presented due to redundancy in the constraint functions. In

the case of both equality and inequality constraints, a similar result is available (see

Ruszczynski and Shapiro, 2007), which also relies on the linear independence of

gradients of active constraints. Since such linear-independence assumptions may often

fail in practical application, we have chosen to adopt an approach using optimality gaps

as defined by Mak et al. (1999), and similarly by Ruszczynski and Shapiro (2007). We

base our stopping criterion upon this approach with a small modification.

 21

With the iterate
k

k
nx found at the completion of stage k, we again estimate ()

k

k
nf x

as before, with ()
k

k
nN

f x∗ using a new independent sample of size N ∗ . Here we elect to

use a large sample size to obtain an accurate approximation of ()
k

k
nf x . Calculation effort

is not substantially increased by this procedure as we are not performing an optimization.

From the central limit theorem, a probabilistic upper bound on f ∗ is approximately

normally distributed with mean ()
k

k
nf x and variance 2 () /

k

k
nx Nσ ∗ for large N ∗ .

The modification of the method described in Mak et al. (1999) occurs in our

construction of a lower bound as described in Subroutine PE. While Mak et al. (1999)

use the average of the optimal values of a set of APs, we construct a lower bound on f ∗

by averaging lower bounds on optimal values of the APs for each stage. Our method

tends to be more conservative as it is based upon an assumption of a rate of convergence.

From Royset (2009), we see that our lower bound is approximately normally distributed

with mean f ∗ and variance 2
1

() / ,k
ll

x Nσ ∗
=∑ for large 1 2 1 2, ,..., and , ,...,k kN N N n n n .

Hence the inequality

 () 1

2 2
1 1 1

ˆ ()
Prob ()

ˆ ˆ/ /
k

k

k
k nk N

n k
k k ll

f f x
f x f

N N

ε
ε

σ σ

∗
∗
+∗

∗
+ + =

⎛ ⎞+ −⎜ ⎟≤ + ≥ Φ⎜ ⎟⎜ ⎟+⎝ ⎠∑
 (3.5)

holds approximately. We therefore stop the calculations when the right-hand side in (3.5)

exceeds a selected confidence level δ , typically 0.95 or 0.99.

 22

THIS PAGE INTENTIONALLY LEFT BLANK

 23

IV. COMPUTATIONAL STUDY

This chapter presents a computational study of two network-flow problems to test

how well Model-Predictive Control reduces computation times compared to alternative

policies for selecting sample sizes. We define two network-flow problems with random

congestion and present results of Model-Predictive Control as compared to heuristic

control of sample sizes.

A. SINGLE-COMMODITY NETWORK FLOW

To develop a single-commodity flow problem (SCF) for testing, we consider the

generic congestion model for single-commodity flows as described by Ahuja et al.,

(1993, p. 651), but modify it to include random congestion. Here, the generic model has

a nonlinear objective function of the form

(,)

min ij

x X i j A ij ij

x
M x∈

∈ −∑ , (4.1)

where ijM is the nominal capacity of arc (i, j) and ijx is the flow of a single commodity

on arc (i, j). For review of commodity flow and congestion modeling we refer the reader

to pages 109-124 in Hearn et. al. (2001), and to Marcotte and Nguyen (1998) and

Bergendorf et al. (1997). We first present an SCF problem and then advance to a multi-

commodity flow problem. Even though the SCF problem is a special case of the

multiple-commodity flow problem, we present SCF first, due to the relative ease of

explaining this simpler problem.

We consider a graph G = (N, A), where N and A are sets of nodes and arcs,

respectively. The specific graph considered in this study is shown in Figure 9. This grid

network can flow commodity left-to-right, north-to-south and south-to-north, but not

right-to-left. The test-problem grid has 50 nodes and 134 arcs. The start node, denoted

by s, is the supply source and the terminal node, t, is the demand sink. Individual costs

associated with the flow across an arc are assigned as random numbers from a normal

 24

distribution with parameters that will be specified, and we define a congestion parameter

on each arc by generating a log-normally distributed random variable, with parameters

that will be specified.

s ts t

Figure 9. Transportation Grid Network

We formulate an SCF problem as follows:

Indices

i, j nodes, ,i j N∈

(i, j) arcs (,)i j A∈

Data

ijM capacity of arc (i, j).

ijC unit cost to ship commodity on arc (i, j).

ijµ mean of log-normal random variable denoting congestion on arc (i, j).

2
ijσ variance of log-normal random variable denoting congestion on arc (i, j).

D demand of commodity.

 25

Random Variables

ijω congestion parameter on arc (i, j); this is a log-normal random variable,

 with mean 2 and variance ij ijµ σ .

Decision Variables

ijx amount of commodity shipped on arc (i, j).

Mathematical Formulation

(,)

min E
(1)

ij ij

i j A ij ij ij

C x
M xω∈

⎡ ⎤
⎢ ⎥

+ −⎢ ⎥⎣ ⎦
∑ (4.2)

:(,) :(,)

 if
s.t. 0 if \{ , }

 if
ji ij

j j i A i i j A

D i s
x x i N s t

D i t∈ ∈

− =⎧
⎪− = ∈⎨
⎪ =⎩

∑ ∑

 0 , ,ij ijx M i j≤ ≤ ∀

We note that the expectation in the objective function can be computed by

evaluating |A| one-dimensional integrals, and thus a simpler method for solving this

model is available. However, this model serves as a simple example to illustrate our

solution approach, which applies to more general situations.

We assign 500 units of supply at node s, with a corresponding 500 units of

demand at node t. Arc capacities are chosen as 100 for all (,)ijM i j= . Based on

preliminary numerical experiments, we find that 0.993θ = is sufficient to obtain lower

bounds on
kNf ∗ in Step 6 of Subroutine PE.

B. MULTI-COMMODITY NETWORK FLOW

For testing, we also consider a congestion problem for a multi-commodity flow

problem in a transportation network (MCF), and reuse the grid network described in

Subsection A. The formulation is as follows:

 26

Indices

i, j nodes, ,i j N∈

(i, j) arcs (,)i j A∈

p commodity, {1,2,..., }p P∈

Data

ijM capacity of arc (i, j).

p
ijC unit cost to ship commodity p on arc (i, j).

ijµ mean of log-normal random variable denoting congestion on arc (i, j).

2
ijσ variance of log-normal random variable denoting congestion on arc (i, j).

pD demand of commodity p.

Random Variables

ijω congestion parameter on arc (i, j); this is a log-normal random variable,

 with mean 2 and variance ij ijµ σ .

Variables

p
ijx amount of commodity p shipped on arc (i, j).

Mathematical Formulation

(,)

min E
(1)

p p
ij ij

p
p

i j A ij ij ij
p

C x

M xω∈

⎡ ⎤
⎢ ⎥
⎢ ⎥+ −⎢ ⎥⎣ ⎦

∑
∑ ∑

 (4.3)

:(,) :(,)

 if
s.t. 0 if \{ , } ,

 if

p

p p
ji ij

j j i A i i j A p

D i s
x x i N s t p

D i t∈ ∈

⎧− =
⎪− = ∈ ∀⎨
⎪ =⎩

∑ ∑

 , ,p
ij ij

p

x M i j≤ ∀∑

 27

 0 , , ,p
ijx i j p≤ ∀

For this problem, arc capacity is increased to 150 for all (,)ijM i j= to allow for

increased flow from additional commodities. We consider two commodities with

supplies at s equal to 500 and 300 and demands at t equal to 500 and 300, respectively.

In MCF, preliminary experimentation shows that 0.997θ = tends to provide a valid

lower bound of
kNf ∗ in Step 6 of Subroutine PE and we adopt that value for θ .

C. COMPUTATIONAL STUDY

For this computational study, we apply the parameters described next to both SCF

and MCF. We use the PGM nonlinear-programming algorithm with Armijo step size

rule; for example, see, Polak (1997, p. 67) and Bertsekas (1999, p. 31). The quadratic

direction-finding problem in the PGM is solved using LSSOL (Gill et al., 1986) as

implemented in TOMLAB 7.0 (Holmstrom, 2008). We use parameters

0.5 and 0.8α β= = in the Armijo step-size rule and in Subroutine PE use an exponential

smoothing parameter 1/ 3ψ = and tolerance 0.0001θε = .

For stopping criterion, we draw a new independent sample of size 10000N ∗ = to

evaluate ()
k

k
nN

f x∗ and use a stopping confidence level of 0.95δ = . We use

2(,) (3, 4)ij ijµ σ = for all (,)i j as parameters for the log-normal distributed random variable

ijω representing congestion. Arc costs and p
ij ijC C are generated from a normal

distribution of random numbers with mean 80 and standard deviation 20. Additionally,

we set the relative optimality tolerance to 0.01 for use in calculations, i.e., 1
ˆ0.01 kfε ∗
+=

on stage k.

For comparison studies, we consider two versions of Model-Predictive Control;

MPC1 and MPC2. In MPC1, Model-Predictive Control is applied to all stages of the

conceptual algorithm, including the first stage. We find empirically that MPC might

have poor control in the initial stage when the parameters estimated in

(, , ,)k fr r r rθ σ
∗S - SSCP are inferior estimates. Hence, we also consider MPC2, where

 28

Model-Predictive Control is used from the second stage of the conceptual algorithm. The

first stage uses a predetermined sample size and number of solver iterations. We

examine three choices for the first-stage policy resulting in the following three cases of

MPC2:

1. MPC2a. 1 1450, 100n N= = , and remaining stages use MPC.

2. MPC2b. 1 1600, 100n N= = , and remaining stages use MPC.

3. MPC2c. 1 1900, 100n N= = , and remaining stages use MPC.

Choices of 1n for these cases of MPC2 are determined by solving 1 0.01nθ = , 1 0.05,nθ =

and 1 0.1nθ = , where θ is the conservative rate-of-convergence coefficient as discussed

in Chapter 3, Section B, Subsection 2.

As a basis for comparison, we consider the following heuristic policies:

1. Fixed policy. Predetermine and k kN n and keep fixed throughout each

 stage of CA.

2. Additive policy. Predetermine kn and add a predetermined number to kN

 at the beginning of each stage of CA 1(i.e., 50)k kN N+ = + .

3. Multiplicative policy. As in additive policy, predetermine kn , and adjust

 sample size by a multiplicative factor at the beginning of each stage

 1(i.e., 1.2)k kN N+ = .

We use an initial sample size 1 10N = for all heuristic policies, except for the

fixed policy for which 0.5 5000kN N ∗⋅= = for all k. In order to use the PGM within

CA, we must first find an initial feasible solution for both SCF and MCF to start the

calculations. We do so by formulating and solving the following linear program in the

case of SCF:

 29

(,)

- : min ij ij
i j A

C x
∈
∑SCF LP

:(,) :(,)

 if
s.t. 0 if \{ , }

 if

 0 , ,

ji ij
j j i A i i j A

ij ij

D i s
x x i N s t

D i t

x M i j

∈ ∈

− =⎧
⎪− = ∈⎨
⎪ =⎩

≤ ≤ ∀

∑ ∑

and the following linear program in the case of MCF:

(,)

- : min p p
ij ij

i j A p

C x
∈
∑ ∑MCF LP

:(,) :(,)

 if
s.t. 0 if \{ , } ,

 if

p

p p
ji ij

j j i A i i j A p

D i s
x x i N s t p

D i t∈ ∈

⎧− =
⎪− = ∈ ∀⎨
⎪ =⎩

∑ ∑

 , ,p

ij ij
p

x M i j≤ ∀∑

 0 , , ,p
ijx i j p≤ ∀

We implement our network-flow problems in Matlab Version 7.7.0 on a desktop

computer running Windows XP with 3.73 GHz processor speed and 3.25 GB of RAM.

SCF-LP and MCF-LP are solved to find an initial feasible solution for both SCF and

MCF using the linear programming solver linprog in the optimization toolbox.

For comparison studies, we record the computing time of CA using each of the

MPC policies with the computing time for each of the other policies considered. We

evaluate each of the heuristic policies with a different predetermined control on the

number of solver iterations. Evaluations are run with kn for all k set at 5, 25, 50, 75 and

100 iterations. In the additive approach, the sample size is increased by 100 at the

beginning of every stage. For the multiplicative approach, two separate heuristics are

considered. First, we evaluate the policy with an adjustment to sample size as

1 1.5k kN N+ = for all k and then increase the adjustment control on sample size to

1 2k kN N+ = for all k.

 30

The results summarized in Table 1 provide average computing times over 20 runs

of the CA with standard deviations for the SCF problem. The first column lists the

individual policies mentioned above for determining (,)k kN n . The second and third

columns give the average and standard deviations, respectively, of the total

computational times to reach a near-optimal objective value in the SCF problem.

Policy avg st dev
MPC1 23.17 3.60
MPC2a, n 1 = 450, N 1 = 100 14.87 2.67
MPC2b, n 1 = 600, N 1 = 100 18.38 2.48
MPC2c, n 1 = 900, N 1 = 100 24.77 3.15
Fixed, n = 5 443.30 2.48
Fixed, n = 25 638.12 42.84
Fixed, n = 50 605.40 50.24
Fixed, n = 75 614.86 38.27
Fixed, n = 100 631.84 50.60
Additive, n = 5 398.07 16.78
Additive, n = 25 87.58 7.78
Additive, n = 50 49.26 6.76
Additive, n = 75 41.54 6.81
Additive, n = 100 40.81 9.08
Mult 1.5, n = 5 > 1100 -----
Mult 1.5, n = 25 81.95 13.54
Mult 1.5, n = 50 31.20 6.31
Mult 1.5, n = 75 29.85 7.85
Mult 1.5, n = 100 27.95 5.93
Mult 2.0, n = 5 > 1100 -----
Mult 2.0, n = 25 > 1100 -----
Mult 2.0, n = 50 77.06 7.52
Mult 2.0, n = 75 35.98 7.34
Mult 2.0, n = 100 32.56 8.29

SCF Computational Times (sec.)

Table 1. Average and standard deviation of computing times of CA with Model-Predictive

Control (MPC) policies and heuristic policies applied to SCF.

In Table 1, the best heuristic policy with respect to computational time is the

multiplicative policy with a multiplicative factor of 1.5 and 100kn = for all k. In

comparison, MPC1 finds a near-optimal objective value nearly five seconds faster and

 31

does so with a 39.3% reduction in standard deviation of computational time over the 20

independent runs. MPC2a improves further still, offering a reduction in computing time

of nearly 47%. Additionally, the standard deviation between the independent runs drops

55% as compared to the best heuristic policy. The computational times recorded do not

reflect the time required to determine the Model-Predictive Control, i.e., to solve

approximately (, , ,)k fr r r rθ σ
∗S - SSCP . We elect to exclude this time because for large,

real-world problems, computing times for the minimization calculations and checking

stopping criterion are expected to be considerably larger than computing times for

determining (,)k kN n .

Several policies considered for SCF return results that are costly regarding

computing times. In those cases, we terminate the calculations after 1100 seconds and do

not compute averages: see rows 12, 17, and 18 of Table 1. For the policies with times

greater than 1100 seconds, the relatively small number of solver iterations is not

sufficient to make substantial gains towards f ∗ . In these cases, kN grows quite large

and computing time suffers from the large sample size. For each of the problems, kN is

limited to 400,000 to avoid exhausting computer memory, and in each of these cases, the

sample size grows to this limit.

The results summarized in Table 2 for MCF, provide average computing times

over 20 runs of the CA, along with standard deviations.

 32

Policy avg std dev
MPC1 40.70 7.21
MPC2a, n 1 = 450, N 1 = 100 26.46 4.22
MPC2b, n 1 = 600, N 1 = 100 28.84 4.35
MPC2c, n 1 = 900, N 1 = 100 37.57 2.95
Fixed, n = 5 > 1000 -----
Fixed, n = 25 891.65 47.96
Fixed, n = 50 905.67 61.53
Fixed, n = 75 905.11 58.92
Fixed, n = 100 891.89 57.60
Additive, n = 5 612.40 41.05
Additive, n = 25 143.12 14.81
Additive, n = 50 79.86 9.91
Additive, n = 75 66.74 10.75
Additive, n = 100 54.86 7.24
Mult 1.5, n = 5 > 1000 -----
Mult 1.5, n = 25 151.96 33.66
Mult 1.5, n = 50 48.66 8.86
Mult 1.5, n = 75 44.41 7.51
Mult 1.5, n = 100 48.12 12.71
Mult 2.0, n = 5 > 1000 -----
Mult 2.0, n = 25 > 1000 -----
Mult 2.0, n = 50 142.55 46.12
Mult 2.0, n = 75 61.95 16.52
Mult 2.0, n = 100 52.64 11.67

MCF Computational Times (sec.)

Table 2. Average and standard deviation of computing times of CA with Model-Predictive

Control (MPC) policies and heuristic policies applied to MCF.

As in SCF, a number of the policies make the sample size grow until it hits the

limit of 400,000, thereby affecting overall computing times. In these cases we terminate

the calculations after 1000 seconds and do not compute averages.

The best heuristic policy for MCF is again a multiplicative policy. However in

this larger problem, computational time is best when 75kn = for all k: compare this to

SCF, where computational time is best when 100kn = for all k. MPC1 improves on this

computational time by nearly four seconds and does so with essentially the same

variability of computational time between runs as the best heuristic policy.

 33

We see that modifying MPC in the first stage gives further computational savings.

Policy MPC2a shows an improvement of 40% in overall computing time, on average, and

improves the standard deviation of computing time by almost 44% over the 20

independent runs. These results indicate that while the MPC typically provides a “good”

policy for selecting (,)k kN n , the estimates of parameters in (, , ,)k fr r r rθ σ
∗S - SSCP for

the first stage are rather poor and a heuristic policy may be better in that stage.

To verify that the stopping test (3.5) does not cause premature termination of CA,

we compute a lower bound on f ∗ as described in Mak et. al., (1999). Specifically, we

run the PGM on the AP with N = 10000 until that algorithm stalls and record the last

function value. This is an estimate of Nf ∗ . We repeat this process 30 times. By the

central limit theorem, the average of these function values is approximately normal and

provides a lower bound f on f ∗ . We find that in all 160 runs of the MPC policies, the

probability that the last solution found is no worse than (1 + 0.01) f is essentially 1.0.

Hence, the stopping test (3.5) is rather conservative, as zero unsatisfactory solutions is

well within the 0.05 160 8⋅ = expected when 0.95δ = .

MPC1 solves each of the network-flow problems faster than any of the heuristic

policies considered. Additional reductions in computing time are gained with MPC2

where the first stage of the CA is primarily used to estimate parameters in

(, , ,)k fr r r rθ σ
∗S - SSCP for k > 2.

 34

THIS PAGE INTENTIONALLY LEFT BLANK

 35

V. CONCLUSIONS

This thesis develops an efficient optimization algorithm for approximately solving

stochastic nonlinear programming problems whose objective functions are sample-

average approximations. We demonstrate improvement in computation times by

approximately solving a discrete-time optimal-control problem to select a policy of well-

balanced sample sizes and number of solver iterations for each stage of the algorithm.

This policy, referred to as the Model-Predictive Control policy (MPC), is compared

against alternative heuristic policies for selecting sample sizes and solver iterations.

MPC approximately solves a single-commodity network-flow problem up to 17% faster,

on average, than the best heuristic policy. Furthermore, the optimal-control problem

provides a 40% reduction in standard deviation of computing times over a set of

independent runs of the algorithm on identical problem instances. When we fix the

number of solver iterations in the first stage and then proceed with MPC, we improve the

computing time, on average, by nearly 47% and reduce the standard deviation between

runs by more than one half.

The application of the discrete-time optimal-control problem to a larger multi-

commodity network-flow problem shows an 8.4% improvement, on average, in

computational time over the best heuristic policy with essentially the same variation of

overall computational time between the 20 independent runs. With the first-stage

modification to Model-Predictive Control, we improve computing time by 40%, on

average, compared to the same heuristic policy and reduce standard deviation between

runs by 44%.

The algorithm developed to solve nonlinear stochastic programs shows

considerable promise and offers significant potential for further study.

 36

THIS PAGE INTENTIONALLY LEFT BLANK

 37

LIST OF REFERENCES

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network flows. Prentice-Hall,
Upper Saddle River, NJ.

Alexandrov, N. M., Lewis, R. M., Gumbert, C. R., Green, L. L., and Newman, P. A.
(2001). Approximation and model management in aerodynamic optimization with
variable-fidelity models. Journal of Aircraft, 38(6), 1093-1101.

Bergondorff, P., Hearn, D. W., and Ramana, M. (1997). Congestion toll pricing of traffic
networks, Network Optimization, Pardalos, P. M., Hearn, D. W., and Hager, W.
W. (Eds.), Lecture Notes in Economics and Mathematical Systems, 450, 51-71.

Bertsekas, D. P. (1999). Nonlinear Programming. Athena Scientific, Belmont, MA.

Gill, P. E., Hammarling, S. J., Murray, W., Saunders, M. A., and Wright, M. H. (1986).
LSSOL 1.0 user’s guide. Technical Report SOL-86-1, System Optimization
Laboratory, Stanford University. Stanford, CA.

He, L. and Polak, E. (1990). Effective diagonalization strategies for the solution of a
class of optimal design problems. Institute of Electronics and Electrical
Engineers Transactions on Automatic Control, 35(3), 258-267.

Hearn, D. W., Yildirim, M. B., Bai, L., and Ramana, M. (2001). Computational methods
for congestion toll pricing models. Proceedings of IEEE Conference on
Intelligent Transportation Systems, 257-262.

Higle, J. L. and Zhao, L. (2004). Adaptive and nonadaptive samples in solving stochastic
linear programs: a computational investigation. Stochastic Programming E-Print
Series, (accessed on November 2008) http://dochost.rz.hu-berlin.de/spes/.

Holmstrom, K., and Systems Optimization Laboratory Stanford and UC San Diego.
(2008). TOMLAB Optimization Environment, TOMLAB/SOL v7.0. (accessed on
February 2009) http://tomopt.com/tomlab/.

Mak, W. K., Morton, D. P., and Wood, R. K. (1999). Monte Carlo bounding techniques
for determining solution quality in stochastic programs. Operations Research
Letters, 24, 47-56.

Marcotte, P., and Nguyen, S. (1998). Equilibrium and Advanced Transportation
Modeling. Kluwer Academic Publishers, New York, NY.

Polak, E. (1997). Algorithms and consistent approximations. Springer-Verlag, New
York, NY.

 38

Polak, E. and Royset, J. O. (2007). Efficient sample sizes in stochastic nonlinear
programming. Journal of Computational and Applied Mathematics.

Poojari, C., Lucas, C. and Mitra, G. (2008). Robust solutions and risk measures for a
supply chain planning problem under uncertainty. Journal of the Operations
Research Society, 59(1), 2-12.

Royset, J. O. (2009). Adaptive control of sample size in stochastic optimization.
Available from author.

Royset, J. O. and Polak, E. (2007). Extensions of stochastic optimization results
toproblems with system failure probability functions. Journal of Optimization
Theory and Application, 133(1), 1-18.

Royset, J. O. and Polak, E. (2004). Implementable algorithm for stochastic optimization
using sample average approximations. Journal of Optimization Theory
Applications, 122(1), 157-184.

Ruszczynski, A. and Shapiro, A. (2007). Lectures on stochastic programming. Stochastic
Programming Resources, (accessed on November 2008)
http://www.stoprog.org/index.html?resources.html.

Santoso, T., Ahmed, S., Goetschalckx, M., and Shapiro, A. (2005). A stochastic
programming approach for supply chain network design under uncertainty.
European Journal of Operations Research, 167, 96-115.

Shapiro, A. (2000). Stochastic programming by Monte Carlo simulation methods.
Stochastic Programming E-Print Series, (accessed on November 2008)
http://dochost.rz.hu-berlin.de/spes/.

Shapiro, A. and Homem-de-Mello, T. (1998). A simulation-based approach to two-stage

stochastic programming with recourse. Mathematical Programming, 81, 301-
325.

Sox, C. R. and Muckstadt, J. A. (1997). Optimization-based planning for the stochastic

lot-scheduling problem. Institute of Industrial Engineers Transactions, 29(5),
349-357.

 39

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Johannes O. Royset
Naval Postgraduate School
Monterey, California

4. R. Kevin Wood
Naval Postgraduate School
Monterey, California

5. Robert F. Dell
Naval Postgraduate School
Monterey, California

